US009479194B2

a2 United States Patent

10) Patent No.: US 9,479,194 B2

Mizushima et al. 45) Date of Patent: Oct. 25,2016
(54) DATA COMPRESSION APPARATUS AND (56) References Cited
DATA DECOMPRESSION APPARATUS
(71) Applicant: Hitachi, Ltd., Tokyo (JP) U.S. PATENT DOCUMENTS
. . 5,831,558 A * 11/1998 Harvell HO3M 7/3088
(72) Inventors: Nagamasa Mizushima, Tokyo (JP); 341/106
Hideyuki Koseki, Tokyo (JP); Atsushi 6,121,901 A * 9/2000 Welchcccocvvnnnn HO3M 7/46
Kawamura, Tokyo (JP) 341/51
6,529,912 B2* 3/2003 Satoh HO3M 7/3084
. R 707/693
(73) ASSlgnee HITACHI’ LTD" TOkyo (JP) 7’167’115 Bl * 1/2007 Mondal """""""" H03M 7/3088
341/51
(*) Notice: Subject to any disclaimer, the term of this 8,326,605 B2* 12/2012 Balegar HO3M 7/3084
patent is extended or adjusted under 35 341/51
U.S.C. 154(b) by 328 days. 2010/0017424 Al 1/2010 Hughes
2010/0246983 Al 9/2010 Ho_sokav_va
(21) Appl. No.: 14/360,500 2011/0231629 Al 9/2011 Shiraishi
(22) PCT Filed: Aug. 9, 2013 FOREIGN PATENT DOCUMENTS
Jp 10-187410 A 7/1998
(86) PCT No.: PCT/JP2013/071617 JP 2005-269184 A 9/2005
Jp 2010-068511 A 3/2010
§ 371 (e)(1), P 2011-193406 A 9/2011
(2) Date: May 23, 2014 JP 2013-150041 A 8/2013
WO 2009/057459 A 5/2009
(87) PCT Pub. No.: WO2015/019484 . .
* cited by examiner
PCT Pub. Date: Feb. 12, 2015
. L Primary Examiner — Brian Young
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.
US 2016/0233880 A1 Aug. 11, 2016
57 ABSTRACT
(51) Int. CL The present invention guarantees throughput for decom-
HO3M 7/42 (2006.01) pressing compressed data. A data compression apparatus
HO3M 7/30 (2006.01) includes: a division unit that divides plaintext data inputted
GOG6F 3/06 (2006.01) to the division unit into a plurality of plaintext blocks each
(52) US.CL having a prescribed plaintext block length; a compression
CPC ..o HO3M 7/3084 (2013.01); GOGF 3/065 unit that creates a payload for each plaintext block of the
(2013.01); GOGF 3/0619 (2013.01); GOGF plurality of plaintext blocks by compressing the plaintext
3/0688 (2013.01); HO3M 7/3086 (2013.01); block using a sliding dictionary-type compression algo-
HO3M 7/3088 (2013.01) rithm, creates a header indicating the length of the payload,
(58) Field of Classification Search and creates a compression block that includes the header and

CPC HO3M 7/3084; HO3M 7/3086; HO3M
7/3088; GOGF 3/0688; GOG6F 3/065; GOGF

3/0619

USPC .o 341/106, 107, 87

See application file for complete search history.

the payload; and a concatenation unit that creates com-
pressed data by concatenating a plurality of compression
blocks created from the plurality of plaintext blocks.

8 Claims, 12 Drawing Sheets

B17

Compressicn/decompression circuitry \/\1 04

Compression unit

—T>| Division unit 1 Payload |, Header

creation unit creation unit

unit

M 610

8611 8612 8613 816
Compression circuit
627 628

Extraction unit Decompression unit

Payload
unit

Code Character
layout solving
unit unit

621

4 $

622 623

Decompression circuit 620

US 9,479,194 B2

Sheet 1 of 12

Oct. 25, 2016

U.S. Patent

L0l

ebeiols

Aowsw ysel

0Ll

cor |WA | | W] | WS| | N
WY
90l
@vo_‘
: _ | _ AnoJn
_ _ .v uoissaldwoosp
A , ! Juoissaidwon
_
diN ~" 0L
Wvdd Jajjonuod Alowsw yse|d
c0lL w
101 N €0l
) obe.io)s 6
fuowsw yse|4 d/1 1eAs-idybiH
Y 9)j04uoD [ens-1eybiy

L 'Bi4

US 9,479,194 B2

Sheet 2 of 12

Oct. 25, 2016

U.S. Patent

Lee €22 YAAA

¢ ¢

-~ ‘OFLF 100 0100000 ‘T06000 0100000 ‘01001001 "10001L001

‘100100 0100000 ‘10101004 ‘OLLOLOOL ‘1OLOLO0} 0010100} ‘110000 0100100} 1000100}

- rtvl fe'vlae gyl ®eye’poqre

SRauEe

€le ¢clc

..Tepogeqe'ge@Ppogqe}e’poqe

¢ ¢

€0¢ ¢0¢ 10¢

Z'6i4

0z e1ep passaidwo)
ﬁ

012 e1ep passaldiwiod /77

00¢ Ejep xsple|d

US 9,479,194 B2

Sheet 3 of 12

Oct. 25, 2016

U.S. Patent

¢ B

ZZ eiep passaidwo)n

US 9,479,194 B2

Sheet 4 of 12

Oct. 25, 2016

U.S. Patent

POl

oww/\J INoo uolssaldwosad
mmm% NN@N Em%
nun Hun jun
Buinjos |« InoAeg UoNoBIXS
Jsoeley) apo)d peojied
Jun uoissaiduloda jilun uonaeaixy
829 129
orw/\/ 1N2J10 uoisseidwio)d
@EN mEN NEN S@N
yun Hun uoresud JuN uoneaud
uojeUSleaU0D) lopeaH peojked el | JHUN UOISIAI]
Jiun uoissaudwon

Anauo uoissaldwogap/uolssaidwo)

¢

219

B4

US 9,479,194 B2

Sheet 5 of 12

Oct. 25, 2016

U.S. Patent

pua

y0¢

eJep passaiduwod ajeald o]
S$)00|q UoIssaldWwod B}eua}esu0)

€0¢

¢ae

L0E

A

peojAed uolssa1dwoo 0}
Jepeay uolssaidwod yoeny

X

syo0|q xawed
apooud pue ssaudwo)

b

syo00|q xauied jo Ayjeln|d
ojul ejep Jxsjute|d apialg

()

G'Bi4

US 9,479,194 B2

Sheet 6 of 12

Oct. 25, 2016

U.S. Patent

) eiep
I3 passaldwo)

LEY
SY20]q
uoissasdwo)
" = e "
naoy | yagL | wagy i MAOY | Wz |
a7 vZy 5 ey 5 Ty > 244 speojfed
WU] [< Nﬁu uolssaidwion
< »!] P, P «—
uaoy | 1901 yagy | nqoy | NPT |
0¥ L yop L cop L zop Loy M
) D) DR A 0oy
; N r;T N Lz_ N F \ w._n N S ejep xeie|d
ag W g8 | ag m as m g8 _m
: : “ > sebuel
m “ : \ - K
" “_ \ | /Meuohap
|) 7 /7 Buipis
Nmzv A.v:u ﬁm_‘.v /N_\.v

9 B4

US 9,479,194 B2

Sheet 7 of 12

Oct. 25, 2016

U.S. Patent

pue

605 panndino si %o0|q Jxajule|d ise|
Y un Buissaooud auljadid sjnoexg

¥0S

'~ 18peay uoissaidwiod jxau
] 0} Juiod sisAjeue aAO\

; elep passaldwond jo pug

auliadid oy peojAed
uoIssaidwod Jwsueld |

4

Japeay uoissaldwod uo paseq
peojAed uoissaidwod 10ei1X

(s)

JAIE

S3A

¢0S

US 9,479,194 B2

Sheet 8 of 12

Oct. 25, 2016

U.S. Patent

6181 /191G1lv1leldlilOL

s SNV /2

[
[
1

|

I
]
1
!

\

.

-

[

VA

062

_ W\ __
1 \\\m\

[

@sﬁ,ﬂﬁjd

ev.

OGP S e

=

A7)

\\w\\

(374

Jz_j

L

eel cel LEL

||||||||||||||||

eLs

cls LLZ

m elep

17 _ummmmzano

€cL

9 B4

ccl Ll

US 9,479,194 B2

Sheet 9 of 12

Oct. 25, 2016

U.S. Patent

P 81 L1 9L Gl vl gl ¢l Ll oL
fok{okdofkdok{ek]{eldo <o g
mAlmeTme¢memm/l\/§w
0 I 0 B s B B IS IO) &ruA\ 2 mln\W\}//m_‘m
(= T
R e 0] i AIllrlH e =
ol n IR NISIRISIGISIRE I =l
Blelelielkde ki Kk
q kgl gk / e ke
...... S T e B E R
7 /_ /S NGV EAENE
Nirel: Zonun
ol8 Gl8 = / / 9 ./ © Z/:, mum AH_ cor_woombxm
¥18 / q / e m peojied woi
1al;
N\
/
6614

US 9,479,194 B2

Sheet 10 of 12

Oct. 25, 2016

U.S. Patent

el 81
»00iq ajuield se INdINQ <«— ¥06 0¢6
006 | A
L
W -
A e W e .ml.-m:wlm¢OA.wl
B« | & \/A\.m.xmmiv_¢u~mm1
Pl)} k206 <H A k9 kB K-
9 |k S & L.NA.lEAIUAr_n
] e e Al-d.:AlfAlQmwr
} ok Y e ml:T:WqBA_ml
N e q e T dld Aldn T
Ukt M je— b4 Y
01614

ZZ9 Jun
1noAe)

Bp0od WodH

US 9,479,194 B2

Sheet 11 of 12

Oct. 25, 2016

U.S. Patent

029~ unoup uoissaidwooeq
MNGN NN@% FAY N mN@N
nan Hun HUN UOPOBIXS Hun
BUIAIOS | INOAE] peojkey |S] uoisioAuoo
Jspeiey) 2poD asionay
Hun uoIssaldwona(jun uopoesx3
829 129
oro/\/ 1UN2ID UOISSaIdWOD
919 GL9 €9 Zl9 L9

¢ ¢ N w N

nun Hun jun uonesd Jun uonesd U UOISIAI
uoneusieouos [T uoisieauon [€] sepeen [peoikeq [T Y IsIng
Jun uolssalduwon
¥0 _./\/ Ainalo uoissasdwoosepyuoissaldwo) £19
B4

US 9,479,194 B2

Sheet 12 of 12

Oct. 25, 2016

U.S. Patent

1c0lL 02Ol

w v _m |

UOISISAUOD mw._®>m7ﬂ_® @Co_w‘_®>coo

€lolL 2lo} :o_‘

A —

0

7
/

:Zw: [IreT | _3__ | |

llllllllllllllllllllllllllllllll

€00l <00l 1001

VAR E

US 9,479,194 B2

1
DATA COMPRESSION APPARATUS AND
DATA DECOMPRESSION APPARATUS

TECHNICAL FIELD

The present invention relates to technology for data
compression and data decompression.

BACKGROUND ART

LZ77 is an extremely common reversible data compres-
sion algorithm developed by Lempel and Ziv in 1977. The
principle of 1.Z77 is sliding dictionary-type compression.
The LZ77, while moving a pointer from the beginning to the
end of a character string stream, searches for the longest
match to a character string that starts from the current
pointer in a character string stream of a prescribed length in
the past from the current pointer (called a sliding dictionary).
In addition, the LZ77 reduces the amount of data in a
character string stream by converting the character string
indicated by the current pointer to copy symbols, and
compresses the character string stream. In addition to having
a simple principle and being easy to implement, the LZ77 is
also known for having relatively good compressibility. The
size of the sliding dictionary is arbitrary, and a larger size
sliding dictionary increases the probability of matching a
character string, thereby improving compressibility.

Storage systems for storing and managing large amounts
of data are being equipped with data compression functions
to make it possible to lower per-capacity-cost when larger
amounts of data are being stored. Storage systems are
classified into two types: file storage for managing data in
file units, and block storage for managing data in fixed-size
sector units. Regardless of the type of storage system, the
compression methods being employed in the data compres-
sion functions are by and large the above-described L.Z77, or
an algorithm derived from the L.Z77.

Patent Literature 1 discloses a technique for the high-
speed decompression of data compressed on the basis of the
LZ77. A parallelization technique for decompressing com-
pressed data at high speed by processing software using a
general-purpose processor is also disclosed in Patent Litera-
ture 1. This technique divides plaintext data to be com-
pressed into a plurality of blocks and compresses each block.
The number of blocks is determined on the basis of the
parallel processing capabilities of the processor (number of
cores and so forth) used at decompression.

CITATION LIST
Patent Literature

[PTL 1]
Japanese Patent Application Laid-open No. 2010-068511

SUMMARY OF INVENTION
Technical Problem

When plaintext data is divided into a plurality of blocks
of the same size, each of the blocks is compressed, and
decompression is performed using software, the time
required to decompress each block will differ depending on
the data content. With respect to this problem, Patent Lit-
erature 1 discloses a method for varying the size of each

10

15

20

25

30

35

40

45

50

55

60

65

2

block, adjusting the division boundaries by repeating com-
pression and decompression on a trial basis, and equalizing
decompression times.

In a storage system or communication system, there are
cases in which the throughput for outputting data is guar-
anteed. When a system like this decompresses compressed
data and outputs the decompressed data, there are cases
where the throughput cannot be guaranteed for software-
based decompression.

Solution to Problem

To resolve the aforementioned problems, a data compres-
sion apparatus, which is one aspect of the present invention,
includes: a division unit that divides plaintext data inputted
to the division unit into a plurality of plaintext blocks each
having a prescribed plaintext block length; a compression
unit that creates a payload for each plaintext block of the
plurality of plaintext blocks by compressing the plaintext
block using a sliding dictionary-type compression algo-
rithm, creates a header indicating the length of the payload,
and creates a compression block that includes the header and
the payload; and a concatenation unit that creates com-
pressed data by concatenating a plurality of compression
blocks created from the plurality of plaintext blocks.

A data decompression apparatus, which is another aspect
of the present invention, includes: an extraction unit that
uses compressed data created by: dividing plaintext data into
a plurality of plaintext blocks, each of the plurality of
plaintext blocks having a prescribed plaintext block length;
creating a payload for each plaintext block of the plurality of
plaintext blocks by compressing the plaintext block using a
sliding dictionary-type compression algorithm; creating a
header indicating the length of the payload; creating a
compression block that includes the payload and the header;
and concatenating a plurality of compression blocks created
for the plurality of plaintext blocks, to recognize each header
of the plurality of compression blocks from the compressed
data, and extract the payload from the compressed data on
the basis of the payload length indicated in the recognized
header; and a decompression unit that restores the plaintext
block by decompressing the extracted payload using the
sliding dictionary-type compression algorithm.

Advantageous Effects of Invention

According to an aspect of the present invention, it is
possible to guarantee throughput for decompressing com-
pressed data.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows the configuration of a flash memory storage
101 in an example of the present invention.

FIG. 2 shows an example of data compression in accor-
dance with the Deflate algorithm.

FIG. 3 shows an example of data decompression in
accordance with the Deflate algorithm.

FIG. 4 shows the configuration of compression/decom-
pression circuitry 104 of a first example.

FIG. 5 shows data compression processing of the first
example.

FIG. 6 shows a specific example of the data compression
processing of the first example.

FIG. 7 shows data decompression processing of the first
example.

US 9,479,194 B2

3

FIG. 8 shows a specific example of the operation of a
payload extraction unit 621.

FIG. 9 shows specific examples of the configuration and
operation of a code layout unit 622.

FIG. 10 shows specific example of the configuration and
operation of a character solving unit 623.

FIG. 11 shows the configuration of compression/decom-
pression circuitry 104 of a second example.

FIG. 12 shows a specific example of secondary compres-
sion.

DESCRIPTION OF EMBODIMENTS

Examples of the present invention will be explained using
the drawings.

Example 1

A storage apparatus that utilizes flash memory as the
storage media will be explained below as an example of the
present invention.

In recent years, as storage media for storage systems,
attention has focused on flash memory storage, such as solid
state drives (SSD) mounted with large numbers of NAND-
type flash memories, which is a nonvolatile semiconductor
memory, either in addition to or in place of hard disk drives
(HDD).

A flash memory does not possess a head-seek mechanisms
like an HDD, and as such, latency is minimal at data access.
Therefore, the flash memory has outstanding speed perfor-
mance in a random data read. As such, the switch from HDD
to flash memory storage as the storage media in storage
systems is progressing in applications such as databases for
which high-speed random reads are required. However,
although the bit cost for flash memory storage is becoming
cheaper year by year pursuant to the high integration of flash
memory cells as a result of refinements in semiconductor
processes, this bit cost is still between three- and 10-times
higher than that of HDDs. For users who set a high value on
storage system installation costs, the bit cost of the flash
memory storage is cause for hesitation when considering
employing flash memory storage.

Accordingly, the size of the physical data stored in a flash
memory can be reduced by implementing a data compres-
sion technique in the flash memory storage. In so doing, the
storage capacity of the flash memory storage can be made to
appear virtually larger, enabling the bit cost to be reduced.

FIG. 1 shows the configuration of a computer system in
an example of the present invention. The computer system
includes a higher-level controller 110, and a plurality of flash
memory storages 101. The higher-level controller 110 is
connected to the flash memory storage 101, and controls the
flash memory storage 101. The computer system may
include a single flash memory storage 101. The flash
memory storage 101 includes a higher-level interface (I/F)
102, a flash memory controller 103, a plurality of flash
memories 105, and a dynamic random access memory
(DRAM) 106, which is a volatile memory. The flash
memory 105 is a chip including a NAND-type flash
memory.

The flash memory controller 103 includes compression/
decompression circuitry 104, and a microprocessor (MP)
107. The microprocessor 107 is also connected to the
higher-level I/F 102, the flash memory 105, and the DRAM
106, and controls these elements. The microprocessor 107,
in accordance with programs stored in the DRAM 106,
executes processing for interpreting the contents of a read/

5

10

15

20

25

30

35

40

45

55

60

65

4

write command from the higher-level controller 110, send-
ing/receiving data to/from the higher-level controller 110,
controlling the compression/decompression of data by the
compression/decompression circuitry 104, and transferring
data to and from the flash memory 105 and the DRAM 106.
The computer system may be a storage system or a server
system. The higher-level controller 110 in a storage system,
for example, is a storage controller for controlling redundant
arrays of independent disks (RAID) that use the flash
memory storage 101. The storage controller is connected to
a host computer via a network, such as a storage area
network (SAN), and controls the flash memory storage 101
in accordance with a read/write command from the host
computer. The higher-level controller 110 in a server system,
for example, is a server computer that performs a read/write
relative to the flash memory storage 101.

The higher-level I/F 102 is an interface mechanism for
connecting to the higher-level controller 110, and responds
to a read/write command for sending data to the higher-level
controller 110 and receiving data from the higher-level
controller 110. The higher-level I/F 102 mechanism and
protocols for sending and receiving commands and data, for
example, conform to interface specifications that are com-
patible with the HDD.

The compression/decompression circuitry 104 is logic
circuitry for compressing and decompressing data. The
compression/decompression circuitry 104 reversibly com-
presses write data received in accordance with a write
command from the higher-level controller 110 and creates
compressed data in order to reduce the amount of data stored
in the flash memory 105. In addition, the compression/
decompression circuitry 104 decompresses compressed data
read from the flash memory 105 and creates plaintext data in
order to send plaintext data to the higher-level controller 110
in accordance with a read command from the higher-level
controller 110.

The microprocessor 107 first stores write data from the
higher-level controller 110 in the DRAM 106. At this time,
the microprocessor 107 returns a write-complete response to
the higher-level controller 110. Thereafter, the microproces-
sor 107 instructs the compression/decompression circuitry
104 to compress the write data. In accordance with this
instruction, the compression/decompression circuitry 104
compresses the write data to convert the write data to
compressed data, and stores the compressed data in the
DRAM 106. Then, the microprocessor 107 writes the com-
pressed data to the flash memory 105.

The microprocessor 107 reads the compressed data from
the flash memory 105 in accordance with a read command
from the higher-level controller 110, and stores the com-
pressed data in the DRAM 106. Thereafter, the micropro-
cessor 107 instructs the compression/decompression cir-
cuitry 104 to decompress the compressed data. In
accordance with this instruction, the compression/decom-
pression circuitry 104 decompresses the compressed data to
convert the compressed data to plaintext data, and stores the
plaintext data in the DRAM 106. Then, the microprocessor
107 sends the plaintext data stored in the DRAM 106 to the
higher-level controller 110.

Thus, for a data write, since the microprocessor 107
executes compression processing after returning a write-
complete, the write performance of the flash memory storage
101 as seen from the higher-level controller 110 is constant
regardless of whether or not compression is performed.
Alternatively, because a data read is not completed until the
microprocessor 107 has finished returning the read data to
the higher-level controller 110, the read performance of the

US 9,479,194 B2

5

flash memory storage 101 as seen from the higher-level
controller 110 depends on the time it takes to decompress the
compressed data. That is, the read performance of the flash
memory storage 101 can be improved when the compres-
sion/decompression circuitry 104 performs a high-speed
real-time decompression process.

The compression/decompression circuitry 104 is imple-
mented as logic circuitry. The compression/decompression
circuitry 104 has high-speed data decompression through-
put, and as such, for compressed data as well as non-
compressed data, makes it possible to realize high-speed
random read performance, which is a characteristic feature
of the flash memory storage 101. In the storage system,
when a compressed data read request arrives from the
higher-level controller 110, it is preferable that the decom-
pression of the compressed data be performed as fast as
possible so that the throughput for decompressing the com-
pressed data and restoring the plaintext data to the higher-
level controller 110 does not deteriorate significantly com-
pared to a normal non-compressed data read.

A use case of the present invention is not limited to a flash
memory storage 101. The present invention can also be
applied to a data compression function of another storage
system. Reducing capacity costs by using a storage equipped
with a compression function has been attempted in conven-
tional storage systems as well. However, because it is
difficult to guarantee the read performance of compressed
data in a conventional storage system, the data compression
function is most often used for static data that is read
accessed infrequently, such as backup data and/or snapshot
images. According to a storage system that applies the
present invention, high-speed read performance can be guar-
anteed for compressed data as well, thereby making it
possible to use the data compression function for dynamic
data that is read-accessed frequently.

A data compression/decompression method using a com-
mon sliding dictionary-type algorithm based on L.Z77 will
be explained below.

The well-known Deflate algorithm defined in Request for
Comments (RFC) 1951 will be explained here. A data
compression function for compressing data and a data
decompression function for decompressing data are realized
using either software or hardware.

FIG. 2 shows an example of data compression using the
Deflate algorithm.

Data compression using the Deflate algorithm includes
LZ77 compression and the encoding of a bit pattern. The
drawing shows plaintext data 200 expressed as a character
string, [.Z77 compressed data 210, which is a character
string for which the plaintext data 200 has been compressed
using [.Z77, and compressed data 220, which is a bit pattern
obtained by encoding the [.Z77 compressed data 210. The
encoding, for example, is Huffman encoding.

The data compression function sequentially checks
whether or not a character string, which is the same as a
character string that has occurred, occurs again later in the
plaintext data 200, which is a character string stream. In
accordance with this, when a certain character string
matches up with L successive characters from J characters in
front of the first character thereof, the data compression
function converts this character string to a copy symbol [L,
J] L is called the copy length and J is called the copy
distance. For example, the four-character character string
201 “b,c,d,e” matches up with four successive characters
from six characters in front of the first character “b”. In this
case, the data compression function converts the character
string 201 to the copy symbol 211 [4, 6]. Similarly, the

5

10

15

20

25

30

35

40

45

55

60

65

6

four-character character string 202 “a,b,a,b” matches up
with four successive characters from two characters in front
of the first character “a” to include portions that duplicate
one another. In this case, the data compression function
converts the character string 202 to the copy symbol 212 [4,
2]. Similarly, a four-character character string 203 “c,d,e,f”
matches up with four successive characters from 14 char-
acters in front of the first character “c”. In this case, the data
compression function converts the character string 203 to
the copy symbol 213 [4, 14].

Since the data amounts of these copy symbols 211, 212,
and 213 is less than the data amounts of the original
character strings 201, 202, and 203, the conversions make it
possible to create .Z77 compressed data 210 that decreases
the data amount of the plaintext data 200. Alternatively, the
data compression function does not perform such a conver-
sion for a character that occurs for the first time in the
plaintext data 200 and/or a character string in which the
number of successively matching characters is less than
three characters (that is, L<3) because the data amount of the
original character string is sufficiently small.

The range of the character string stream (hereinafter
called a dictionary) to be referenced in the above-described
match search will be assumed to be a range from one
character in front of the relevant character string toward the
past (forward) by a number of characters of a prescribed
dictionary size. This is because failure to limit the dictionary
size will result in a large amount of data represented by the
J (restore quantity) of the copy symbol [L, J], and will lower
the effect of reducing the data amount. Failure to limit the
dictionary size will also increase the search time and lower
performance. Because the dictionary range slides rearward
for each search, the dictionary is called a sliding dictionary,
and the 1.Z77 is one of the sliding dictionary-type compres-
sion algorithms (sliding dictionary scheme).

When a plurality of matching character strings exists
within the sliding dictionary, the data compression function
converts the longest successively matching character string
to a copy symbol. This has the effect of decreasing the data
amount even more.

Thus, L.Z77 compression is character string conversion
for reducing the data amount by using a past range of
character strings up to the dictionary size as a sliding
dictionary.

Performing [.Z77 compression alone still does not create
compressed data. The copy symbol is simply a symbol that
represents the act of copying, and is not compressed data. To
create compressed data, the data compression function uses
aprescribed encoding scheme to encode characters that have
not been converted to a copy symbol (hereinafter called
literal characters) and the copy symbols, and concatenates
these encoded characters and copy symbols to form a bit
stream. The bit stream is the result of encoding in accor-
dance with the Deflate rules, and is the ultimately created
compressed data 220.

Within the compressed data 220, a bit pattern 221 is 13
bits in length and is the code word for the copy symbol [4,
6], a bit pattern 222 is 12 bits in length and is the code word
for the copy symbol [4, 2], and a bit pattern 223 is 14 bits
in length and is the code word for the copy symbol [4, 14].
Within the compressed data 220, the other bit patterns are
eight bits in length, and are the code words for the literal
characters. Thus, the bit pattern length of the respective code
words in the compressed data 220 is not fixed.

FIG. 3 shows an example of data decompression using the
Deflate algorithm.

US 9,479,194 B2

7

The data decompression function uses the compressed
data 220 bit stream as input, and restores the original
plaintext data 200 by reversing the processing of the data
compression function.

In order to restore the compressed data 220 to the sym-
bolic representation of the [.Z77 compressed data 210, first
the data decompression function must extract the individual
bit patterns (code words) from within the compressed data
220 bit stream concatenated from a plurality of bit patterns.
However, since the bit pattern length of each code word is
not fixed, it is impossible to immediately extract the bit
patterns from random positions. Basically, the data decom-
pression function sets an extraction pointer at the beginning
of the compressed data 220 bit stream, and sequentially
extracts the bit patterns rearward one at a time.

For example, the data decompression function sets the
extraction pointer at the first position 241 in the compressed
data 220, and when it becomes clear that the bit pattern
“10010001” that begins therefrom represents the character
“a”, moves (242) the extraction pointer and sets the extrac-
tion pointer at position 243. Then, when it becomes clear
that the bit pattern “10010010” that begins therefrom rep-
resents the character “b”, the data decompression function
moves (244) the extraction pointer and sets the extraction
pointer at position 245. Thus, the data decompression func-
tion determines the extraction pointer position only after
being able to distinguish the previous bit pattern. Generally
speaking, the encoding process for restoring the compressed
data 220 to the symbolic representation of the LZ77 com-
pressed data 210 is an inefficient serial process like this.

However, it is possible to apply parallel processing to the
encoding process. Since the data decompression function
knows the variations of the code word bit pattern lengths
beforehand, the data decompression function is able to
enumerate extraction point candidates 247 indicative of all
the possible code word arrangements. For example, the data
decompression function can learn beforehand that one real
extraction point exists among the extraction point candidates
247. Accordingly, the data decompression function not only
pushes forward with code word extraction from the start of
the bit stream, but also simultaneously commences provi-
sional extraction at each point within the extraction point
candidates 247. When extractions throughout the range 246
have ended, one valid extraction point is determined from
among the candidates 247. At the determination time point,
extraction has already moved forward from this extraction
point, thereby improving processing performance. However,
when attempting to realize this technique using hardware, a
large number of bit pattern decoders must be deployed,
making the scale of the circuit extremely large. Therefore,
realistically this technique is not possible.

The compression/decompression circuitry 104 of this
example will be explained below.

The compression/decompression circuitry 104 makes it
possible to curb increases in costs resulting from the scale of
the data decompression circuit used in hardware processing,
and to increase speed.

FIG. 4 shows the configuration of the compression/de-
compression circuitry 104 in the first example.

The compression/decompression circuitry 104 includes a
compression circuit 610 for performing data compression
processing, and a decompression circuit 620 for performing
data decompression processing.

The compression circuit 610 includes a division unit 611,
a compression unit 617, and a concatenation unit 616.
Plaintext data is inputted to the division unit 611. The
compression unit 617 includes a payload creation unit 612,

10

15

20

25

30

35

40

45

50

55

60

65

8

and a header creation unit 613. The division unit 611 divides
the plaintext data into a plurality of plaintext blocks. The
payload creation unit 612 creates a compression payload by
compressing the plaintext blocks using a sliding dictionary-
type compression algorithm. The header creation unit 613
creates a header indicating the length of the compressing
payload, and creates a compression block that includes the
compression header and the compression payload. The con-
catenation unit 616 creates compressed data by concatenat-
ing a plurality of compression blocks.

The compression header may be called the header. Also,
the compression payload may be called the payload.

The decompression circuit 620 includes an extraction unit
627 and a decompression unit 628. The extraction unit 627
includes a payload extraction unit 621. The decompression
unit 628 includes a code layout unit 622 and a character
solving unit 623. The compressed data is inputted to the
payload extraction unit 621. The payload extraction unit 621
recognizes the compression header within the compressed
data, and extracts the compression payload from the com-
pressed data on the basis of the payload length indicated by
the recognized compression header. The code layout unit
622 converts the compression payload to an intermediate
block that is the same length as the plaintext block. The
character solving unit 623 restores a plaintext block by
solving indeterminate characters in the intermediate block
using the sliding dictionary. The code layout unit 622 and the
character solving unit 623 include pipelines for converting
the compression payload into the plaintext block.

The data compression process in this example will be
explained below.

In the data compression process of this example, plaintext
data that is to be compressed is divided into a plurality of
plaintext blocks of equal size. It is assumed that the length
of the plaintext block is N [bytes]. The value of N is
determined, using the drive clock frequency of the decom-
pression circuit 620, as an output throughput value, which is
the throughput by which the decompression circuit 620
decompresses the compressed data and outputs the plaintext
data. The output throughput value may be a transmission
rate via which the higher-level I/F 102 sends read data to the
higher-level controller 110, or may be faster than this
transmission rate. For example, when the output throughput
value is X [MB/s] and the drive clock frequency is F [MHz],
it is determined that N=X/F. Furthermore, one byte of the
plaintext data 400 signifies one character. That is, each
plaintext block obtained by dividing the plaintext data
includes an N-character character string. This makes it
possible to output plaintext data at a predetermined output
throughput in accordance with the decompression circuit
620 decompressing the compressed data and outputting
N-bytes of plaintext data during each drive clock cycle.

FIG. 5 shows the data compression processing in the first
example.

First, the division unit 611 divides the inputted plaintext
data into a plurality of blocks in units of N characters (bytes)
(301). Next, the payload creation unit 612 uses [LZ77
compression like that described hereinabove to compress
each plaintext block obtained by dividing the plaintext data,
and creates a bit stream in accordance with bit pattern
encoding (302). The bit stream is called a compression
payload.

In Step 302, the payload creation unit 612 performs L1277
compression for each plaintext block in accordance with the
following two rules.

The first rule is that the range of the sliding dictionary
may extend beyond the plaintext block boundary. That is, the

US 9,479,194 B2

9

sliding dictionary has a prescribed dictionary size and slides
toward the rear of the plaintext data regardless of the
plaintext block boundary the same as in ordinary LZ77
compression.

The second rule is that, while performing a match search
between a character string in a plaintext block and the
sliding dictionary, the search stops when the character string
reaches the tail end of the plaintext block. That is, a character
string that extends beyond the boundary of the plaintext
block is not converted to a single copy symbol. For example,
when a 10-character character string also exists J characters
in front of the first character of the 10-character character
string, and the plaintext block boundary exists between the
front six characters and the rear four characters of the
character string, the front six characters are converted to the
copy symbol [6, J] and included before the boundary, and the
rear four characters are converted to the copy symbol [4, J|
and included after the boundary.

Following Step 302, the header creation unit 613 com-
putes the number of bits of the compression payload length,
creates a compression header indicating this length, and
makes compression blocks by attaching a compression
header immediately in front of each compression payload
(303). The compression header, for example, is a bit pattern
(1001010 in the case of 74 bits) that represents the com-
pression payload bit length itself. However, the compression
header is not limited thereto, and may be any data that
specifies the bit length of the compression payload.

Lastly, the concatenation unit 616 creates compressed
data 440 (a bit stream) by concatenating all of the compres-
sion blocks (304) and ends the flow.

FIG. 6 shows a specific example of the data compression
processing in the first example.

For example, it is assumed that the output throughput
value of read data in the flash memory storage 101 is 1600
MB/s and that the drive clock frequency of the compression/
decompression circuitry 104 is 200 MHz. According to the
calculation method for the plaintext block length described
hereinabove, the plaintext block length N is 8. In the
following explanation, N will be regarded as 8. The division
unit 611 divides the plaintext data into 8-byte units. In this
specific example, the 40 bytes from the start of the plaintext
data 400 is divided into plaintext blocks 401, 402, 403, 404,
405 and so forth. Next, the payload creation unit 612
performs L.Z77 compression on the data in each plaintext
block.

The plaintext block 401 is compressed to a 24-bit com-
pression payload 421 having a range from the start of the
plaintext data 400 to the compression target as the sliding
dictionary. The plaintext block 402 is compressed to a 40-bit
compression payload 422 having the range 412 from the
start of the plaintext data 400 to the compression target as the
sliding dictionary. The plaintext block 403 is compressed to
a 48-bit compression payload 423 having the range 413 from
the start of the plaintext data 400 to the compression target
as the sliding dictionary. The plaintext block 404 is com-
pressed to a 16-bit compression payload 424 having the
range 414 from the start of the plaintext data 400 to the
compression target as the sliding dictionary. The plaintext
block 405 is compressed to a 40-bit compression payload
425 having the range 415 from the start of the plaintext data
400 to the compression target as the sliding dictionary.
Thereafter, compression is performed in a similar fashion
until the final plaintext block of the plaintext data. In this
specific example, the dictionary range for each plaintext
block always begins at the start of the plaintext data 400, but
in subsequent plaintext blocks, when the character string

10

15

20

25

30

35

40

45

50

55

60

65

10

size included in the sliding dictionary reaches a prescribed
dictionary size, the start of the sliding dictionary range slides
to the rear of the plaintext data 400 similar to conventional
LZ77 compression. Thereafter, the character string included
in the sliding dictionary becomes a dictionary-size character
string further in the past than the compression target.

The compression headers 431, 432, 433, 434, 435 and so
forth are data indicating the bit lengths of the respective
compression payloads 421, 422, 423, 424, 425 and so forth.
The ultimate compressed data 440 is a bit stream in which
compression blocks, which are combinations of compres-
sion headers and compression payloads, are concatenated.

According to this data compression process, it is possible
to divide plaintext data into a plurality of plaintext blocks of
the same size, to compress the plaintext blocks using L.Z77
compression to create compression payloads, and to attach
compression headers indicating the compression payloads.
This makes it possible, in the data decompression process, to
extract a compression payload on the basis of the compres-
sion header even when the lengths of the plurality of
compression payloads differ, and in addition, makes it
possible to extract the next compression block.

Data decompression processing of this example will be
explained below.

FIG. 7 shows the data decompression processing in the
first example.

The payload extraction unit 621 includes a buffer register.
First, the payload extraction unit 621 receives the com-
pressed data inputted in the buffer register, and sets an
analysis pointer for indicating the position in a bit pattern
that is to be analyzed at the start of the compressed data bit
stream (that is, at the start of the initial compression header).

The payload extraction unit 621 analyzes the compression
header starting from the analysis pointer, specifies, on the
basis of the compression header, the compression payload
length of the compression payload that follows this com-
pression header, and extracts the compression payload on
the basis of the compression payload length (501).

The payload extraction unit 621 sends the extracted
compression payload to the pipelines of the code layout unit
622 and the character solving unit 623 (502).

The payload extraction unit 621 determines whether or
not the end of the extracted compression payload is the end
of'the compressed data (503). When the end of the extracted
compression payload is the end of the compressed data, the
payload extraction unit 621 transitions to Step 505. Alter-
natively, when the end of the extracted compression payload
is not the end of the compressed data, the payload extraction
unit 621 moves the analysis pointer to the next compression
header (504). Then, the payload extraction unit 621 transi-
tions the processing to Step 501 once again.

In Step 505, the payload extraction unit 621 waits until the
last compression payload sent to the pipelines of the code
layout unit 622 and the character solving unit 623 has
finished passing through the pipelines (505).

When the last plaintext block including the original
plaintext data has been restored as described above and
outputted from the character solving unit 623, the data
decompression process is complete.

The series of processes of Steps 501 through 504 are
repeated here a number of times equal to the number of
compression blocks including the compressed data. The
payload extraction unit 621 performs this processing during
the time period of a single drive clock cycle. A person skilled
in the art of logic circuit design will be able to easily design
the hardware for the payload extraction unit 621. The

US 9,479,194 B2

11

payload extraction unit 621, for example, is a logic circuit
having the following configuration.

(1) A buffer register for storing compressed data inputted
from outside;

(2) A bit pattern decoder that is connected to the first portion
of the buffer register, and is for analyzing a compression
header;

(3) A data loader for extracting a payload on the basis of the
decode result of the bit pattern decoder, and transferring this
payload to the above-mentioned pipelines; and

(4) A barrel shifter for moving data on the basis of the
decode result of the bit pattern decoder such that the next
compression header arrives at the start of the buffer register.

These circuit elements operate simultaneously in the
payload extraction unit 621. In accordance with this, one
compression payload is extracted from within the com-
pressed data bit stream each cycle. Each compression pay-
load is transferred to the pipelines of the code layout unit
622 and the character solving unit 623 each cycle.

FIG. 8 shows a specific example of the operation of the
payload extraction unit 621.

The drawing shows the configuration of the compressed
data 700, and a timing chart 750 indicating the operation of
the pipelines.

During the initial cycle of the drive clock, the payload
extraction unit 621, on the basis of the compression payload
length indicated by the first compression header 711 in the
compressed data 700, extracts the compression payload 721
subsequent to the compression header 711 and sends the
compression payload 721 to the pipelines, and moves the
analysis pointer to the next compression header 712. During
the next cycle, the payload extraction unit 621, on the basis
of the compression payload length indicated by the com-
pression header 712, extracts the compression payload 721
subsequent to the compression header 712 and sends the
compression payload 722 to the pipelines, and moves the
analysis pointer to the next compression header 713. During
the next cycle, the payload extraction unit 621, on the basis
of the compression payload length indicated by the com-
pression header 713, extracts the compression payload 723
subsequent to the compression header 713 and sends the
compression payload 723 to the pipelines, and moves the
analysis pointer to the next compression header 714. There-
after, the payload extraction unit 621 extracts the compres-
sion payloads in the same way until the compressed data
ends.

The timing chart 750 indicates, for each compression
payload, the data decompression operation period for the
pipelines of the code layout unit 622 and the character
solving unit 623.

The operation period 731 indicates the timing at which the
compression payload 721 is processed by the code layout
unit 622. The operation period 732 indicates the timing at
which the compression payload 722 is processed by the code
layout unit 622. The operation period 733 indicates the
timing at which the compression payload 723 is processed
by the code layout unit 622.

The operation period 741 indicates the timing at which the
compression payload 721 is processed by the character
solving unit 623. The operation period 742 indicates the
timing at which the compression payload 722 is processed
by the character solving unit 623. The operation period 743
indicates the timing at which the compression payload 723
is processed by the character solving unit 623.

Thus, the timing of the pipeline processing of the code
layout unit 622 and the character solving unit 623 for each
of the plurality of compression payloads including the

10

20

40

45

50

12

compressed data 700 shifts one cycle at a time. When the
plaintext block length is eight bytes, the code layout unit 622
and the character solving unit 623 perform eight pipeline
processes at the same time. The code layout unit 622
pipeline converts the compression payloads to an interme-
diate block in eight cycles, and the character solving unit
623 pipeline converts the intermediate block to a plaintext
block in one cycle.

FIG. 9 shows a specific example of the configuration and
operation of the code layout unit 622.

The code layout unit 622 includes a bit pattern decoder
800, and uses the bit pattern decoder 800 to analyze the first
portion of the bit stream of each compression payload. The
bit pattern decoder 800 has a function for creating an
intermediate block corresponding to the compression pay-
load. An intermediate block is intermediate data in a data
decompression process, has the same length as the plaintext
block, and has an N-character (8-character) element.

As described hereinabove, the element of the compression
payload is either a bit pattern indicating a literal character,
or a bit pattern indicating a copy symbol [L, J]. The bit
pattern decoder 800, upon detecting a bit pattern indicating
a literal character at the start of the bit stream, appends the
literal character to the intermediate block. Also, upon detect-
ing a bit pattern indicating the copy symbol [L, J], the bit
pattern decoder 800 appends the same number of indeter-
minate characters [J] as the copy length L to the intermediate
block.

This specific example shows the operation of the code
layout unit 622 relative to the compression payload 723
described hereinabove. For example, the compression pay-
load 723 is the bit stream “e,g,c,[3,J],a,b”. The bottommost
row in the compression payload 723 of this drawing shows
the first bit pattern. The processing of the compression
payload 723 in the pipeline is performed from time T0 to
time T8 in the timing chart 750.

At time T0, the code layout unit 622 detects the bit pattern
of the initial “e” from the compression payload 723 bit
stream. At time T1, the code layout unit 622 configures a
literal character “e” 811 in the intermediate block. At the
same time, the code layout unit 622 shifts forward along the
bit stream and detects the bit pattern of “g” next. At time T2,
the code layout unit 622 appends the literal character “g”
812 to the intermediate block. At the same time, the code
layout unit 622 shifts forward along the bit stream and
detects the bit pattern of “c” next. At time T3, the code
layout unit 622 appends the literal character “c” 813 to the
intermediate block. At the same time, the code layout unit
622 shifts forward along the bit stream and detects the bit
pattern of the copy symbol [3, J]. At time T4, the code layout
unit 622 appends the three indeterminate characters [J] 814
to the intermediate block. At the same time, the code layout
unit 622 shifts forward along the bit stream and detects the
bit pattern of “a”. At time T5, the code layout unit 622
appends the literal character “a” 815 to the intermediate
block. At the same time, the code layout unit 622 shifts
forward along the bit stream and detects the bit pattern of
“b”. At time T6, the code layout unit 622 appends the literal
character “b” 816 to the intermediate block. With that, the
code layout unit 622 completes the N-character (8-character)
entry to the intermediate block. At the same time, the code
layout unit 622 shifts forward along the bit stream, resulting
in an empty bit stream.

From this point up to T8, the code layout unit 622 does not
perform bit pattern analysis. Thus, the contents of the
intermediate block do not change at times T7 and T8. The
timing chart 750 indicates a period during which the inter-

US 9,479,194 B2

13

mediate block contents do not change in the code layout unit
622 with diagonal lines. No matter which bit stream the
compression payload is, the compression payload is a maxi-
mum N-byte (8-byte) bit pattern string, and as such, after
entering the code layout unit 622, an intermediate block
corresponding thereto is invariably completed after N cycles
(eight cycles).

In accordance with this, the compression payload 723 is
converted to the intermediate block “e,g.c,[J],[J],[]],a,b”. In
this intermediate block, the five literal characters (e,g,c,a,b)
signify that these characters will be entered into these
positions in the plaintext block. Alternatively, the three
indeterminate characters [J] indicate the numerical value J,
and simply signify that literal characters, which are sepa-
rated in the past by J, will be entered into these positions in
the plaintext block, but what characters will be entered has
yet to be solved. Thereafter, the character solving unit 623
solves the indeterminate characters.

In this specific example, the code layout unit 622 is an
N-stage (8-stage) pipeline-mode arithmetic circuit, and as
such, a bit stream of eight compression payloads is pro-
cessed simultaneously by eight bit pattern decoders 800
lined up transversely. This specific example only shows the
processing of the code layout unit 622 with respect to the
compression payload 723, but processing is also progressing
simultaneously on other registers for the other seven com-
pression payloads. For example, at time T3, the intermediate
block corresponding to the compression payload 723 is on
the third register from the left, the intermediate block
corresponding to the compression payload 722 is on the
fourth register from the left, and the intermediate block
corresponding to the compression payload 721 is on the fifth
register from the left.

The code layout unit 622 is able to create, from a
compression payload, an intermediate block having a length
of N characters by converting a code word to a literal
character when the code word in the compression payload
indicates a literal character, and converting the code word to
an indeterminate character, which is undetermined, when the
code word indicates a character other than a literal character.
This makes it possible for the last-stage character solving
unit 623 to process N characters at a time during a single
cycle.

FIG. 10 shows a specific example of the configuration and
operation of the character solving unit 623.

The character solving unit 623 is installed for follow-on
processing subsequent to that of the code layout unit 622,
and includes a dictionary register 900 and a data selector
910. The dictionary register 900 realizes the sliding diction-
ary. The data selector 910 detects an indeterminate character
in an intermediate block outputted from the code layout unit
622. Then, from the dictionary register 900, the data selector
910 selects a character indicated by the indeterminate char-
acter string 901, creates a plaintext block by replacing the
indeterminate character with the selected character, outputs
the plaintext block, and, in addition, inputs the plaintext
block to the dictionary register 900.

This specific example shows the operation of the charac-
ter solving unit 623 with respect to an intermediate block
920 corresponding to the compression payload 723. The
intermediate block 920 is inputted to the character solving
unit 623 at time T8. The bottommost row of this drawing
shows the first character in the intermediate block 920. The
data selector 910 detects a three-character long indetermi-
nate character string 901 inside the intermediate block 920.
Thereafter, the data selector 910 selects from the dictionary
register 900 a three-character long character string J-char-

10

15

20

25

30

35

40

45

50

55

60

65

14

acters in front of the position of the indeterminate character
string 901. For example, when the J in the indeterminate
character string 901 indicates 26, the character string 902
“x,y,z” that is 26 characters in front of the indeterminate
character string 901 in the dictionary register 900 corre-
sponds to the indeterminate character string 901. In the
dictionary register 900 of this drawing, each column indi-
cates a plaintext block, and a character in a lower position
in the plaintext block indicates a past character. A position
rightward of a character in the plaintext block indicates a
past character by the number of characters of the plaintext
block length. Therefore, the data selector 910 determines a
character string 903 by replacing the indeterminate character
string 901 with the character string 902. In accordance with
this, plaintext block 904 “e,g,c.x,y,z,a,b” corresponding to
the compression payload 723 is restored at time T9.

The restored N-character (8-character) plaintext block
904 is outputted from the decompression circuit 620 as a part
of the plaintext data, and at the same time is added to the
dictionary register 900. The dictionary register is an N-char-
acter (8-character) shift register, and when a new plaintext
block is added from the left end, the oldest plaintext block
is discarded from the right end. The number of stages in the
dictionary register 900 is obtained by dividing the dictionary
size by N.

The character solving unit 623 is able to restore the
plaintext block by replacing the indeterminate character with
a literal character in the dictionary register 900. Further-
more, the character solving unit 623 is able to increase the
output throughput to N-times the drive clock by processing
N characters at a time in a single cycle.

Thus, the decompression circuit 620, by recognizing a
compression header for each of a plurality of compression
blocks, is able to extract payloads from compressed data on
the basis of payload lengths indicated in the recognized
headers. In addition, the decompression circuit 620 is able to
restore a plaintext block by decompressing the payloads
using a sliding dictionary-type compression algorithm.

Also, the payload extraction unit 621 is able to extract one
compression payload per cycle from compressed data, the
pipelines of the code layout unit 622 and the character
solving unit 623 are able to restore a plaintext block and
output plaintext data N characters at a time per cycle.
Therefore, the decompression throughput for data com-
pressed using the sliding dictionary-type compression algo-
rithm is a prescribed value at all times regardless of the data
content. This throughput can be arbitrarily stipulated at the
hardware design stage. This makes it possible, for example,
to guarantee high-speed read performance for compressed
data in a storage system having a data compression function.

When data compression/decompression using a sliding
dictionary-type algorithm is performed by software, in most
cases compression is done in file units. Therefore, the
plaintext data is large in size, and the dictionary is large in
size. Alternatively, the flash memory storage 101 of this
example performs read/write in units of pages (several kB),
and as such, enables the size of the plaintext data and the size
of the dictionary to be kept smaller than in software-based
data compression/decompression.

Example 2

An example for making the size of the compressed data
smaller and improving compressibility will be explained
below.

The first example reduces the data amount by converting
a character string that matches up with a past character string

US 9,479,194 B2

15

to a copy symbol by using L.Z77 compression, but in this
example, secondary compression is performed as well.
When the copy distance J of a plurality of successive copy
symbols is the same, a secondary compression further
reduces the data amount by combining the copy symbols to
make a single copy symbol.

FIG. 11 shows the configuration of compression/decom-
pression circuitry 104 of the second example.

In this drawing, elements that have been assigned the
same reference symbols as in the first example are either the
same as or correspond to the elements of the compression/
decompression circuitry 104 of the first example. The com-
pression unit 617 of this example, in addition to the elements
of the compression unit 617 in the first example, includes a
conversion unit 615 for secondary compression. The extrac-
tion unit 627 of this example, in addition to the elements of
the extraction unit 627 in the first example, includes a
reverse conversion unit 625 for decompressing the second-
ary compression.

The conversion unit 615, in a case where each of a
plurality of successive compression payloads is a single
copy symbol, and, in addition, the copy distance J of the
copy symbols is the same, converts the copy symbols to a
single copy symbol.

FIG. 12 shows a specific example of secondary compres-
sion.

This drawing shows a case in which N is 8. It is assumed
that the payload creation unit 612 has discovered, in a
position J characters in the past within the sliding dictionary,
a character string that is the same as a character string in
three successive plaintext blocks. In this example, the length
of the three successive plaintext block character strings is
eight charactersx3=24 characters. The payload creation unit
612 respectively converts the three plaintext blocks to
compression payloads 1011, 1012, and 1013 using a data
compression process similar to that of the first example.
Each of the compression payloads 1011, 1012, and 1013
constitutes a copy symbol [8, J], and the same copy symbol
is lined up three in a row. Then, the header creation unit 613
adds compression headers 1001, 1002 and 1003 to the
compression payloads 1011, 1012, and 1013.

Since the copy distance J of the copy symbols of the three
successive compression payloads 1011, 1012 and 1013 is the
same, the conversion unit 615 creates a compression pay-
load 1021 by adding up and integrating the 8-character copy
lengths of the three copy symbols into a single 24-character
copy length, and converting the three copy symbols [8, J] to
a single copy symbol [24, J]. In addition, the conversion unit
615 converts the compression headers 1001, 1002, and 1003
to a compression header 1020 indicating the length of the
compression payload 1021. According to this conversion,
three sets of compression headers and compression payloads
are reduced to one, thereby making it possible to further
reduce the data amount of the compressed data more than in
the first example. In addition, the compression header 1020
includes combination information indicating that the com-
pression payload 1021 is a combined copy symbol.

Thus, the compression circuit 610 is able to perform
processing besides that of the conversion unit 615 the same
as in the first example.

To decompress the compressed data that was subjected to
secondary compression, the reverse conversion unit 625
determines whether or not the compression header 1020
includes the combination information. When the compres-
sion header 1020 includes the combination information, the
reverse conversion unit 625 acquires the combined copy
symbol from the one subsequent compression payload 1011,

20

30

35

40

45

60

16

and as a reverse conversion of the conversion unit 615,
converts the compression payload 1021 to a plurality (M) of
copy symbols to create M compression payloads 1011, 1012,
and 1013. At this point, the copy length L. of the combined
copy symbol is NxM. The compression payloads 1011, 1012
and 1013 are transferred to the code layout unit 622 one at
a time over M cycles. When the compression header 1020
does not include the combination information, the payload
extraction unit 621 transfers one compression payload to the
code layout unit 622 per cycle the same as in the first
example.

Thus, the decompression circuit 620 is able to perform
processing besides that of the reverse conversion unit 625
the same as in the first example.

The extraction unit 627 may determine that the compres-
sion payload is a combined copy symbol without using the
combination information. For example, when the compres-
sion payload shows a copy symbol, and, in addition, the
copy length is M-times the plaintext block length, the
extraction unit 627 may convert the compression payload to
M successive copy symbols.

Variations of the examples described hereinabove will be
explained below.

The compression circuit 610 and the decompression cir-
cuit 620 may be mutually different devices.

As a first variation, an example of a storage system
including a storage controller, a first storage apparatus
connected to the storage controller, and a second storage
apparatus connected to the storage controller will be
explained. The first storage apparatus includes a compres-
sion circuit 610, and the second storage apparatus includes
a decompression circuit 620. The first storage apparatus
reads data, compresses the data to convert the data to
compressed data by using the compression circuit 610, and
sends the compressed data to the storage controller, the
storage controller sends the received compressed data to the
second storage apparatus, and the second storage apparatus
uses the decompression circuit 620 to decompress the
received compressed data, and stores the decompressed data.
In this case, by decreasing the amount of data transmitted, it
is possible to reduce the loads on the storage controller, the
communication line between the storage controller and the
first storage apparatus, and the communication line between
the storage controller and the second storage apparatus.

As a second variation, an example of a communication
system including a first communication apparatus, and a
second communication apparatus connected to the first
communication apparatus via a network will be explained.
The first communication apparatus includes a compression
circuit 610, and the second communication apparatus
includes a decompression circuit 620. The first communi-
cation apparatus compresses inputted data to convert the
inputted data to compressed data by using the compression
circuit 610, and sends the compressed data to the second
communication apparatus, and the second communication
apparatus uses the decompression circuit 620 to decompress
the received compressed data, and outputs the decompressed
data. In this case, by decreasing the amount of data trans-
mitted, it is possible to reduce the load on the network. It is
also possible to guarantee the network communication speed
since the decompression circuit 620 performs decompres-
sion at a predetermined output throughput.

The flash memory storage 101 may be a cache device.

As athird variation, an example of a computer system that
uses a flash memory storage 101 as a cache device will be
explained. The computer system of the third variation
includes either an HDD or a flash memory device as a

US 9,479,194 B2

17

storage device in addition to the components of the com-
puter system of the first example. The storage device is
connected to the higher-level controller 110. The higher-
level controller 110 transmits write data to a cache device in
accordance with a write command. In the cache device, a
compression circuit 610 creates compressed write data by
compressing the write data, and a flash memory 105 stores
the compressed write data. The flash memory 105 may store
the write data. The higher-level controller 110 transmits the
compressed write data to the storage device, and writes the
compressed write data to the storage device. In response to
a read command, the higher-level controller 110 reads the
data in the storage device as compressed read data, and
transmits the compressed read data from the storage device
to the cache device. The flash memory 105 stores the
compressed read data in the cache device, and the decom-
pression circuit 620 creates read data by decompressing the
compressed read data. The flash memory 105 may store the
read data. The higher-level controller 110 transmits the read
data from the cache device. This makes it possible to reduce
the data amount stored in the storage device, and, in addi-
tion, to reduce the data amount transmitted between the
cache device and the storage device. It is also possible to
guarantee the throughput of reads in the computer system.

The compression circuit 610 and the decompression cir-
cuit 620 in the examples and variations described herein-
above may use a sliding dictionary-type compression algo-
rithm other than the LZ77.

REFERENCE SIGNS LIST

101 Flash memory storage
103 Flash memory controller
104 Compression/decompression circuitry
105 Flash memory

107 Microprocessor

110 Higher-level controller
610 Compression circuit

611 Division unit

612 Payload creation unit
613 Header creation unit
615 Conversion unit

616 Concatenation unit

617 Compression unit

620 Decompression circuit
621 Payload extraction unit
622 Code layout unit

623 Character solving unit
625 Reverse conversion unit
627 Extraction unit

628 Decompression unit

The invention claimed is:

1. A data compression apparatus comprising:

a division unit that divides plaintext data inputted to the
division unit into a plurality of plaintext blocks each
having a prescribed plaintext block length;

a compression unit that creates a payload for each plain-
text block of the plurality of plaintext blocks by com-
pressing the plaintext block using a sliding dictionary-
type compression algorithm, creates a header indicating
the length of the payload, and creates a compression
block that includes the header and the payload; and

a concatenation unit that creates compressed data by
concatenating a plurality of compression blocks created
from the plurality of plaintext blocks,

wherein the plaintext block length is a value obtained by
dividing an output throughput for data decompressed

10

15

20

25

30

35

40

45

50

55

60

65

18

by a logic circuit that decompresses the compressed
data, by a frequency of a drive clock in the logic circuit.

2. A data compression apparatus according to claim 1,
wherein the compression unit, in a case where first data in
the plaintext block matches past second data in the plaintext
data, makes use of a copy symbol that indicates a copy
distance indicating a distance from the first data to the
second data and a copy length, which is the length of the first
data, to convert the first data to the copy symbol, and
includes a code word indicating the copy symbol in the
payload, and

when each of M successive payloads in a plurality of

payloads created from the plurality of plaintext blocks
indicates a same first copy symbol, and, in addition, the
copy length of the first copy symbol is the plaintext
block length, the compression unit converts the M
payloads to a single second copy symbol, and specifies
M-times the plaintext block length as the copy length of
the second copy symbol.

3. A data decompression apparatus comprising:

an extraction unit that uses compressed data created by:

dividing plaintext data into a plurality of plaintext
blocks, each of the plurality of plaintext blocks having
a prescribed plaintext block length; creating a payload
for each plaintext block of the plurality of plaintext
blocks by compressing the plaintext block using a
sliding dictionary-type compression algorithm; creat-
ing a header that indicates the length of the payload;
creating a compression block that includes the payload
and the header; and concatenating a plurality of com-
pression blocks created with respect to the plurality of
plaintext blocks, to recognize each header of the plu-
rality of compression blocks from the compressed data,
and extract a payload from the compressed data on the
basis of the payload length indicated in the recognized
header; and

a decompression unit that restores the plaintext block by

decompressing the extracted payload using the sliding
dictionary-type compression algorithm

wherein the plaintext block length is a value obtained by

dividing an output throughput for a plaintext block
restored by the decompression unit, by a frequency of
a drive clock in the decompression unit.

4. A data decompression apparatus according to claim 3,
wherein the decompression unit creates an intermediate
block having the plaintext block length from the extracted
payload by, in a case where a code word in the extracted
payload indicates a literal character, converting the code
word to a literal character, and by, in a case where the code
word indicates something other than a literal character,
converting the code word to an indeterminate character,
which is a character that indicates undetermined.

5. A data decompression apparatus according to claim 4,
wherein the decompression unit creates a plaintext block
from the intermediate block by converting the indeterminate
character to a literal character that is in a sliding dictionary,
and stores the created plaintext block in the sliding diction-
ary.

6. A data decompression apparatus according to claim 5,
wherein the decompression unit includes a pipeline that
decompresses the extracted payload.

7. A data decompression apparatus according to claim 6,
wherein the decompression unit restores one plaintext block
for each cycle of the drive clock.

8. A data decompression apparatus according to claim 3,
wherein, in a case where first data in the plaintext block
matches past second data in the plaintext data, a copy

US 9,479,194 B2

19

symbol that indicates a copy distance indicating a distance
from the first data to the second data, and a copy length,
which is the length of the first data, is used to convert the
first data to the copy symbol, and a code word indicating the
copy symbol is included in the payload, and
in a case where the extracted payload indicates a third
copy symbol, and, in addition, the copy length of the
third copy symbol indicates M times the plaintext block
length, the extraction unit converts the extracted pay-
loads to M successive fourth copy symbols, and speci-
fies the plaintext block length as the copy length of the
fourth copy symbol.

#* #* #* #* #*

10

20

